

L'usage de la calculatrice scientifique non programmable est autorisé Le sujet comporte 4 exercices

On donnera les expressions littérales avant de passer aux applications numériques

Exercice I (7 points):

- -Electrolyse d'un composé ionique : le bromure de plomb
- -Etude de quelques réactions de l'acide lactique

Exercice II (2,5 points):

-Détermination de la célérité d'une onde ultrasonore dans un liquide

Exercice III (5 points):

- Détermination expérimentale de la capacité d'un condensateur
- Etude d'un circuit RLC série

Exercice IV (5,5 points):

- Etude du mouvement de chute verticale d'une bille dans un liquide visqueux
- Etude énergétique d'un oscillateur mécanique (solide-ressort)

NS28F

الامتمان الوطني الموحد للبكالوريا – الدورة العادية 2018 – الموضوع – عادة، الهيزياء والكيمياء — هعرة العلوم التجريبية مسلك العلوم الهيزيانية — خيار هرنسية

Barème San Barème Company Comp

Les parties I et II sont indépendantes

Partie I- Electrolyse d'un composé ionique : le bromure de plomb

On réalise l'électrolyse du bromure de plomb $Pb^{2+} + 2Br$ à haute température par un générateur fournissant un courant électrique d'intensité I constante.

Au cours de cette électrolyse, le métal plomb se dépose sur l'une des électrodes et au niveau de l'autre, il se forme le gaz dibrome.

Au cours du fonctionnement de l'électrolyseur pendant la durée $\Delta t = 3600 \, s$, la masse de plomb déposé est : $m = 20,72 \, g$.

Données:

- Les 2 couples mis en jeu : $Pb^{2+}/Pb_{(s)}$ et $Br_{2(g)}/Br^{-}$;
- La constante de Faraday : F=9,65.10⁴ C.mol⁻¹ ;
- Le volume molaire des gaz dans les conditions de l'expérience : $V_m = 70.5 L \cdot mol^{-1}$;
- La masse molaire du plomb: $M(Pb)=207,2 \text{ g.mol}^{-1}$.
- 0,25
- 1. Donner le nom de l'électrode (anode ou cathode) au niveau de laquelle se forme le dibrome.
- 0,75
 2. Ecrire les équations des réactions aux électrodes, ainsi que l'équation bilan lors de l'électrolyse.
- 0,5 3. Déterminer la valeur de l'intensité I du courant électrique passant dans le circuit pendant la durée Δt .
- 0,5 4. Calculer, dans les conditions de l'expérience, le volume V du gaz dibrome formé pendant Δt.

Partie II - Etude de quelques réactions de l'acide lactique

L'acide 2-hydroxypropanoïque est connu généralement sous le nom de l'acide lactique. C'est un acide organique qui entre dans beaucoup de réactions biochimiques. on le trouve dans le lait et ses dérivés, dans des fruits et légumes. Il est utilisé comme conservateur des aliments et dans la préparation de certains produits pharmaceutiques contre des maladies de la peau...

On se propose d'étudier en premier lieu, la réaction de l'acide lactique avec l'hydroxyde de sodium, puis dans un deuxième temps, sa réaction avec un alcool.

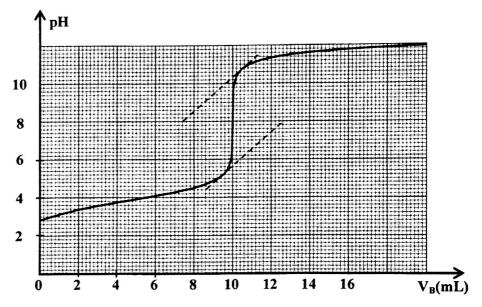
1. Réaction de l'acide lactique avec l'hydroxyde de sodium Données :

- Toutes les mesures sont effectuées à 25°C;
- On représente l'acide lactique $CH_3 CH(OH) COOH$ par AH et sa base conjuguée par A^- ;
- La constante d'acidité du couple $AH_{(aq)}/A_{(aq)}^-$: $K_A = 10^{-3.9}$;
- Zone de virage de quelques indicateurs colorés :

Indicateur coloré	Hélianthine	B.B.T	rouge de crésol
Zone de virage	3 – 4,4	6 – 7,6	7,2 - 8,8

0,75

الامتدان الوطني الموءد للركالوريا – الدورة العادية 2018 – الموضوع


– ماحة: الغيزياء والكيمياء — خعبة العلوم التجريبية مسلك العلوم الغيزيائية — حيار خرنسية

On dose le volume $V_A = 15 \,\text{mL}$ d'une solution aqueuse (S_A) d'acide lactique AH de concentration molaire C_A par une solution aqueuse (S_B) d'hydroxyde de sodium de concentration molaire $C_B = 3.10^{-2} \, \text{mol.L}^{-1}$, en suivant les variations du pH du mélange réactionnel en fonction du volume V_B versé de la solution (S_B).

La courbe de la figure ci-dessous, représente les variations du pH en fonction du volume $V_{\rm B}$ au cours du dosage.

- 0, 5 1.1. Ecrire l'équation de la réaction de dosage.
- 1.2. Déterminer les coordonnées V_{BE} et pH_E du point d'équivalence. 0,5
- 0,5 **1.3.** Calculer la concentration C_A de la solution (S_A) . 0,5
 - 1.4. Choisir, en justifiant la réponse, l'indicateur coloré adéquat pour repérer l'équivalence.
- $\frac{A^{-}}{AH}$ à l'ajout du volume $V_B = 10 \text{ mL}$, puis déduire l'espèce chimique 0,75 prédominante AH ou A^- .

2. Réaction entre l'acide lactique et le méthanol

On mélange dans un ballon, la quantité $n_0 = 10^{-3}$ mol d'acide lactique $CH_3 - CH(OH) - COOH$ avec la même quantité $n_0 = 10^{-3}$ mol de méthanol pur $CH_3 - OH$, puis on chauffe à reflux le mélange réactionnel pendant une certaine durée.

On obtient à la fin de la réaction la quantité $n_E = 6.10^{-4}$ mol d'un ester E.

- 2.1. Citer deux caractéristiques de cette réaction.
- 0,5 2.2. Proposer deux facteurs cinétiques pour accélérer la réaction d'estérification. 0,5
- 2.3. Ecrire, en utilisant les formules semi développées, l'équation de la réaction ayant lieu entre 0,5 l'acide lactique et le méthanol.
 - 2.4. Calculer le rendement r à la fin de la réaction.

SAME STATEMENT OF THE PROPERTY OF THE PROPERTY

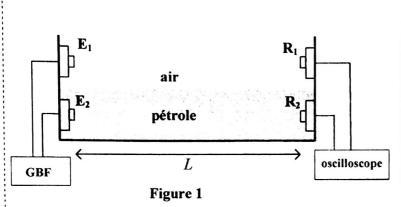
Détermination de la célérité d'une onde ultrasonore dans un liquide

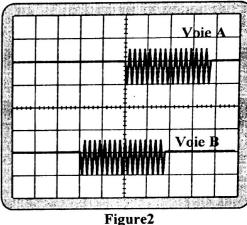
Les ondes mécaniques se propagent seulement dans un milieu matériel, et leur célérité (vitesse de propagation) croit avec la densité du milieu où elles se propagent.

NS28F

الامتدان الوطني الموحد للركالوريا – الدورة العادية 2018 – الموضوع

ماحة: الفيزياء والكيمياء - خعبة العلوم التجريبية مسلك العلوم الفيزيانية - خيار فرنسية


Pour déterminer la valeur approximative de la célérité V_p d'une onde ultrasonore dans le pétrole liquide, on réalise l'expérience suivante:


Dans une cuve contenant du pétrole, on fixe à l'une de ses extrémités deux émetteurs E_1 et E_2 qui sont reliés à un générateur GBF. A l'instant $t_0 = 0$, les deux émetteurs émettent chacun une onde ultrasonore, une se propage dans l'air et l'autre dans le pétrole. A l'autre extrémité de la cuve, on place deux récepteurs R_1 et R_2 , l'un dans l'air et l'autre dans le pétrole. Les récepteurs sont à une distance L des émetteurs. (voir figure 1)

On visualise sur l'écran d'un oscilloscope les deux signaux reçus par R₁ et R₂. (voir figure 2)

Données:

- -les deux ondes parcourent la même distance L = 1,84 m;
- -la célérité des ultrasons dans l'air : $V_{air} = 340 \, m.s^{-1}$;
- la sensibilité horizontale de l'oscilloscope: 2ms / div.

- 0,5 0,5
- 1. Les ondes ultrasonores, sont-elles longitudinales ou transversales ? justifier.
- 2. En exploitant la figure 2, déterminer la valeur du retard temporel τ entre les deux ondes reçues.
- 0,75
- 3. Montrer que l'expression de τ s'écrit sous la forme: $\tau = L.(\frac{1}{V_{air}} \frac{1}{V_p})$.
- 0,75
- 4. Trouver la valeur approchée de la célérité V_p .

EXERCICE III (\$ points) Par Sand Bulletin Par Sa

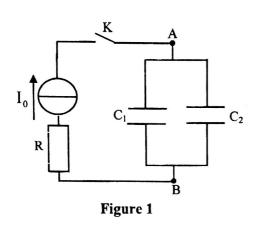
Un professeur a consacré, avec ses élèves, une séance de travaux pratiques de physique pour :

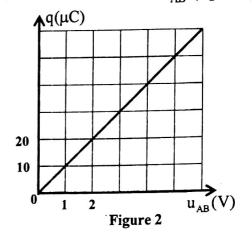
- Déterminer expérimentalement la valeur de la capacité d'un condensateur par deux méthodes différentes.
- Etudier un circuit RLC série.

I-Détermination expérimentale de la capacité d'un condensateur

1. En utilisant un générateur de courant

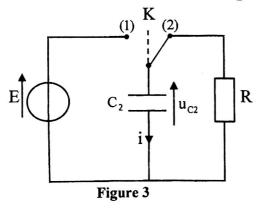
Un premier groupe d'élèves d'une classe réalise, sous les directives du professeur, le montage expérimental de la figure 1 (page suivante) constitué des éléments suivants:

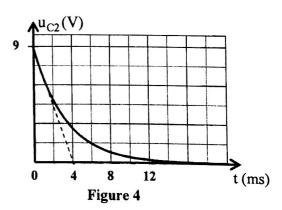

- un générateur idéal de courant qui alimente le circuit par un courant électrique d'intensité I₀;
- un conducteur ohmique de résistance R;
- deux condensateurs (c₁) et (c₂) montés en parallèle, respectivement de capacités $C_1 = 7.5 \,\mu\text{F}$ et C_2 inconnue ;
- un interrupteur K.


الامتدان الوطني المودد للبكالوريا – الدورة العادية 2018 – الموضوع

- ماحة، الغيرياء والكيمياء — خعبة العلوم التجريبية مسلك العلوم الغيريائية — خيار خرنسية

À l'instant $t_0 = 0$, un élève ferme le circuit. A l'aide d'un système d'acquisition informatisé, le groupe d'élèves obtient la courbe des variations de la charge q du condensateur équivalent à l'association des deux condensateurs (c_1) et (c_2) en fonction de la tension u_{AB} (figure 2).


- 0,5 1.1. Quel est l'intérêt de monter des condensateurs en parallèle ?
- 0,75 1.2. En exploitant la courbe de la figure 2, déterminer la valeur de la capacité C_{eq} du condensateur équivalent aux deux condensateurs (c_1) et (c_2) .
- 0.5 1.3. En déduire la valeur de la capacité C_2 .


2. En étudiant la réponse du dipôle RC à un échelon de tension

Un deuxième groupe d'élèves de la même classe réalise le montage représenté par la figure 3 constitué par :

- Un générateur idéal de tension de force électromotrice E ;
- Un conducteur ohmique de résistance $R = 1600\Omega$;
- Le condensateur précédent de capacité C2 ;
- Un interrupteur K à double position.

Après avoir chargé totalement le condensateur, un élève bascule l'interrupteur K sur la position (2) à l'instant $t_0 = 0$. A l'aide d'un système d'acquisition informatisé, le groupe d'élèves obtient la courbe des variations de la tension $u_{C_2}(t)$ aux bornes du condensateur (figure 4).

- 0,5 2.1. Établir l'équation différentielle vérifiée par la tension $u_{C_2}(t)$ au cours de la décharge du condensateur.
- 2.2. La solution de cette équation différentielle est de la forme $u_{C2}(t) = E.e^{-\frac{t}{\tau}}$. Trouver l'expression de la constante de temps τ en fonction de R et C_2 .
- 0,5 2.3. Déterminer de nouveau la valeur de la capacité C₂.

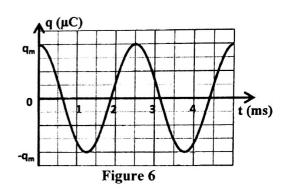
0,25

0,5

0,25

0,75

II- Etude d'un circuit RLC série


Un élève de la même classe réalise le montage représenté sur la figure 5 qui comporte :

- un condensateur, totalement chargé, de capacité $C = 2,5 \mu F$;
- une bobine d'inductance Let de résistance r;
- un interrupteur K.

Après fermeture du circuit, on visualise, à l'aide d'un système d'acquisition informatisé, des oscillations pseudopériodiques représentant les variations de la charge q(t) du condensateur.

- 1. Pourquoi observe-t-on des oscillations pseudopériodiques ?
 - 2. Pour obtenir des oscillations électriques entretenues, un générateur G délivrant une tension proportionnelle à l'intensité du courant $u_G(t)=k.i(t)$ est inséré en série dans le circuit précédent.
- 2.1. Etablir l'équation différentielle vérifiée par la charge q(t).
 - 2.2. En ajustant le paramètre k sur la valeur k=5 (exprimée dans le système d'unités international), les oscillations deviennent sinusoïdales (figure 6). Déterminer la valeur de r.
 - 2.3. En exploitant la courbe de la figure 6, trouver la valeur de l'inductance L de la bobine.

EXERCICE IV (5,5 points)

Les parties I et II sont indépendantes

Partie I- Etude du mouvement de chute verticale d'une bille dans un liquide visqueux Afin de déterminer quelques caractéristiques du mouvement de chute d'une bille dans un

liquide visqueux, on réalise l'expérience suivante :

On remplie une éprouvette graduée par un liquide visqueux et transparent, de masse volumique ρ , puis on libère, sans vitesse initiale dans ce liquide, une bille de masse $m = 2.10^{-2} kg$, de volume V et de centre d'inertie G.

On étudie le mouvement du centre d'inertie G dans un repère (O, \vec{j}) lié à un référentiel terrestre considéré comme galiléen.

La position instantanée du centre d'inertie G est repérée sur un axe vertical \overrightarrow{Oy} orienté vers le bas (figure 1).

On considère que la position de G à l'instant t=0 est confondue avec l'origine de l'axe \overrightarrow{Oy} et que la poussée d'Archimède $\overrightarrow{F_a}$ n'est pas négligeable devant les autres forces.

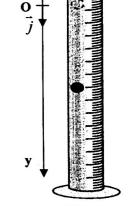


Figure 1

La force de frottement fluide est modélisée par $\vec{f} = -k.\vec{v_G}$. ($\vec{v_G}$ étant le vecteur vitesse instantanée du centre d'inertie G et k une constante positive).

On rappelle que l'intensité de la poussée d'Archimède vaut le poids du liquide déplacé : $F_a = \rho . V. g$, où g est l'intensité de pesanteur.

عادة، الغيرياء والشيمياء — حعبة العلوم التجريبية عساك العلوم الغيريانية — حيار فرنسية

Avec une camera numérique et un logiciel adapté, on obtient, après traitement des données expérimentales, la courbe des variations de la vitesse instantanée du centre d'inertie de la bille en fonction du temps (voir figure 2).

1 1. En appliquant la deuxième loi de Newton, montrer que l'équation différentielle vérifiée par la vitesse s'écrit sous la forme :

$$\frac{dv_G}{dt} + \frac{1}{\tau} v_G = A$$
, en précisant l'expression du

temps caractéristique τ en fonction de k et m et l'expression de la constante A en fonction de g, m, ρ et V.

- 0,5 2. Déterminer graphiquement la valeur de la vitesse limite v_{Glim} et la valeur de τ .
 - 3. Trouver la valeur de k et celle de A.
 - **4.** L'équation différentielle du mouvement de G s'écrit sous la forme numérique :

$$\frac{dv_G}{dt} = 9,26 - 18,52.v_G.$$

En utilisant la méthode d'Euler et les données du tableau suivant, calculer la valeur approchée de a_3 et celle de v_4 .

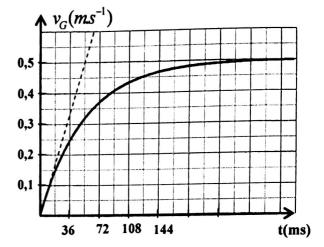


Figure 2

t (s)	$v_G(\text{m.s}^{-1})$	$a_G \text{ (m.s}^{-2}\text{)}$
:		:
0,015	0,126	a_3
0,020	v_4	6,28
0,025	0,192	5,70

Partie II- Etude énergétique d'un oscillateur mécanique (solide-ressort)

On modélise une partie d'une machine mécanique par un oscillateur horizontal, constitué d'un solide (S), de centre d'inertie G et de masse m fixé à l'extrémité d'un ressort horizontal à spires non jointives de masse négligeable et de raideur $K = 35 N.m^{-1}$.

L'autre extrémité est attachée à un support immobile.

On écarte le solide (S) de sa position d'équilibre d'une distance X_m puis on le lâche sans vitesse initiale.

Le solide (S) oscille sans frottements sur un plan horizontal.

On étudie le mouvement du centre d'inertie G dans un repère (O,\vec{i}) lié à un référentiel terrestre considéré comme galiléen.

La position de G, lorsque le solide (S) est à l'équilibre, coïncide avec l'origine O de l'axe (O, i).

On repère la position de G à un instant t par l'abscisse x dans le repère (O, \vec{i}) . (figure 3, page suivante)

On choisit la position de G à l'état d'équilibre (x=0) comme référence de l'énergie potentielle élastique.

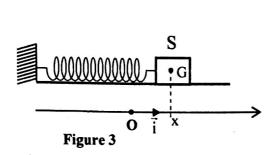
L'équation horaire du mouvement de G s'écrit sous la forme: $x(t) = X_m \cdot \cos(\frac{2\pi t}{T_0} + \varphi)$.

NS28F

الاعتمان الوطني الموحد البكالوريا – الدورة العادية 2018 – الموضوع

عاحة، الفيرياء والكيمياء — هعرة العلوم التجريبية عملك العلوم الفيريانية — حيار فرنسية

0,75


La courbe de la figure 4 représente les variations de l'abscisse x en fonction du temps. 1. Déterminer les valeurs de X_m , T_0 et φ .

0,5

2. Trouver la valeur de l'énergie potentielle élastique E_{pel} du système mécanique à la date $t_1 = 0,5 s$.

0,75

3. Calculer le travail $W_{AB}(\vec{F})$ de la force de rappel, lorsque le centre d'inertie G se déplace de la position A d'abscisse $x_A = X_m$ à la position B d'abscisse $x_B = -X_m$.

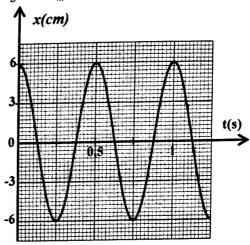


Figure 4